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Abstract-Multiple cracking in a fiber.reinforced brittle matrix: composite under longitudinal tensile
loading is investigated within the framework of linear elastic fracture mechanics. A perfect bond is
assumed at the interface. Stress intensity factors are presented for different ratios of shear moduli.
crack spacings and fiber volume fractions. Stress fields are given for a brittle matrix tiber-reinforced
composite. calcium aluminosilicate glass ceramic reinforced with silicon carbide fibers (SiC/CAS).
The stress fields are used to predict damage mechanisms in the composite. It is shown that crack
interaction effects are significant for crack spacings that are observed in composites with good
bonding at the tiber-matrilt interface.

INTRODUCTION

Experiments carried out on fiber-reinforced brittle matrix composites have shown that prior
to complete failure multiple transverse matrix cracking occurs under longitudinal tensile
lo"lding (Evans and Marshall, 1989; Daniel et al., 1989). II has been observed that while
Ihe number of cracks increases (reducing the spacing between cracks) there is a satu­
ration density of cracks and hence a minimum crack spacing. The main objective of this
paper is to investigate the efft.'Ct of crack spacing and fiber volume ratio on the crack tip
stress intensity factor and the stress fields in the brittle matrix. The stress fields in the brittle
matrix arc used to predict damage mechanisms in the composite.

Most of the models udopted by various researchers include various assumptions to
simplify the amllyses. The paper by McCartney (1989) reviews some of the earlier work
done in analyzing fracture in brittle matrix composites. To systematically tackle the problem
of fraclure in brittle-matrix fiber-reinforced composites using a fracture mechanics
approach. Wijeyewickrema et €II. (1991) first considered the case of an annular matrix crack
surrounding a single fiber. Next a hexagonal array of fibers was modeled using the concentric
circular cylinders model (Wijeyewickrema and Keer, 1991). In that analysis cracking was
confined to a single transverse cross-section. In the present paper multiple cracking of the
brittle matrix is investigated.

Multiple parallel cracks were first considered by Collins (1962), who considered penny­
shaped cracks in an infinite elastic solid. Other previous studies of multiple parallel cracks
have been limited to planar problems of a single homogeneous solid. Benthem and Koiter
(1973) used an asymptotic approximation method to consider the case of a half-plane with
a periodic array of edge cracks while Bowie (1973) used a technique involving conformal
mapping to study the same problem. The problem of thermally induced parallel edge cracks
in a half-plane was considered by Nemat-Nasser et af. (1978) while both edge and internal
periodic cracks in a half-plane have been investigated by Nied (1987).

FORMULATION OF THE PROBLEM

The concentric cylinders model used to analyze multiple cracking in a brittle-matrix
composite with a hexagonal array of fibers is shown in Fig. I. Perfect bonding is assumed
at the interface of the infinitely long elastic fiber of radius a and the elastic matrix which
has an outer radius b. The periodic array of annular cracks which have inner and outer
radii of c and d respectively (a ~ c < b, a < d ~ b), are distributed along the z-axis a
distanceh apart. A uniform longitudinal tensile strain &0 is applied to the system at z = ± 00.
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Fig. I. A periodic array of annular matri)( cracks surrounding Ifw elastic liber. The C{'I1ccntric
circul;lr cylinders 111\'dd represents a unit cd! which n1\ldds the case l,f;1 hc)(ag(lnal array of libers

The solution to the mulliple cracking prohlem is ohtained hy thc superposition of the
solutions of two related prohlcms: A crack-free uniaxially loaded composite specimen
which has a stn:ss-frcc outer boundary and a matrix I.:racked specimen loa(h:d only on the
crack surl~tl.:eswhich hits a zero radial disphtcement at the outer boundary. The reasons for
selecting these houndary conditions havc hcen givcn elsewhere (Wijeyewickrema and Keel'.
1991) and will not he repeated here. The self-equilibrating stresses applied to the crack
surl~lces in the second prohlem arc equal and opposite to the stresses (1;,(r) obtained from
the undarnagnl composite specimcn.

The multiple crack problem is tackled hy making usc of the stress Held developed
pn.:viollsly for a single crack hy Wijeyewil.:kn.:ma and Keer (11)91). Since == 0 is a plane of
symmetry only the upper hall' of the representative cell ::: ;?; () is considered. fn what follows,
the superscripts and suhsaipts 0 and I refer to the f1her and matrix, respectively. Love's
stress functions i'(r, ;) and XI (r, =) for the tiber and matrix respectively an: given by

( I )

+ j" .I~(p)p(1vl + :p) e 'PJo(rp) dp, (2)
<l

where j; (i = J. .... 8) are unknown functions, Jo ( ) is the Bessel function of the first kind
of order nand In ( ) and K,,( ) arc the modified Bessel functions of the first and second
kind respectively of order 11. The Poisson ratios are denoted by Vi. (i = 0, I). The complete
displacement and stress fields for the fiber and matrix are given by eqns (2)-(6) and (8)­
(12) in Wijeyewickrema and Kecr (199 I). The axial stress in the matrix t1;Jr, =) is given by
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(J)Ar. =) == ~ r.c {j4(s)/u(rs) +15(s)[2(2 - v I )/0 (rs) + rsl) (rs)] +16(s)Ko(rs)
7l Jo

+ 17(s)[ - 2(2 - v I )Ko(rs) +rsK) (rs)]}sJ cos (=S) ds+ LX) IK (p)p4 (I +=p) e-:PJo(rp) dp.

(3)

The continuity conditions at the interface due to the assumed perfect bond are

u~(a.=) == u,'(a.=). u~(a.=) == u)(a.=). 0 ~ =< Xl.

(J~(a.=) == (J,',(a.=). (J~(a.=) == (J,~(a.=). 0 ~ =< 00.

The boundary conditions on the external cylindrical surface of the matrix are given by

u~(b.=) == O. 0 ~ =< 00.

(J,'Ab.=) == O. 0 ~ Z < 00.

and the conditions on the planes of symmetry are

(4)

(5)

(6)

(7)

/(~(r./lh) == O. 0 ~ r ~ a. u)(r.nh) == O. a ~r < c. d < r ~ b. (8)

(1::(r.nh) = -per). c < r < d.

(9)

(10)

where n == - OCJ.' ••• + 00. Here per) is the axial stress in the matrix in an undamaged
composite subjected to uniform longitudinal tensile strain at z == ± 00.

Equation (8a) yields the condition f.l(P) == 0, while from the expressions for shear
stress ,lnd the antisymmetric nature of this stress it can be shown that eqn (9) is satisfied.

By defining a new unknown function cP(r) which is related to the gradient of the crack
opening displacement as follows:

J11 iJ I
-I- ;\ u: (r, 0) == cP(r), c: < r < d,

-VI cr

it can be shown from eqns (8b) and (II) that

( II)

(12)

From the four boundary conditions at the interface and the two conditions on the external
surface of the matrix a system of six equations is obtained and the unknown functions ft,
(i == I. 2. 4, 5. 6, 7) can be expressed as

(13)

where des) is the determinant and AiJ(s), (i = 1,2,4,5,6,7;j = 1, ... ,6) are the appropriate
elements of the adjoint of the coefficient matrix of the system ofsix equations. The functions
hJ(t, s). (j == 1. .... 6) are given by eqns (28)-(33) in Wijeyewickrema and Keer (1991). By
substituting for ft. (i == 4.... ,8) from eqns (12) and (13) into eqn (3), the stress (11:(r, z) at
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any point (r. :) in the matrix on the upper part of the concentric cvlinder due to a single
crack located at : = O. is obtained as '-

where

., "'J jOt: "\1

17;:(r.:) = : J t<!J(t) dt dskz(r.l.s) cos (:5) + J tJ[(r. t. :)¢{t) dt
11: c 0 ("

(14)

k:--;(r.l.S) = 6;S) {(JI .4 4 I h l ) 10(rs) + (JI A5Ihi)(:~(2-~,,)/o(rS)+rSldr5»

+ (Jl A 6Ih.) Ko(rs) + Ctl A 7ihl ) (-2(2-V 1)Ko(rS)+rsKI(rs))} (15)

and

• 41r
k- -

- (t+r)z+:z
(17)

hen: K(k) and E(k) are complt:te elliptic integrals of the first and sccono kind respectivdy.
By using the principle of superposition. the axial stress in the matrix on the: = 0 plane

due to the eracks located in the upper part of the cylinder (: > 0) is obtaineo from eqn (14)
by selling: = nit and summing on n from + I to rf;,. from symmetry considerations the
axial stress in the matrix on the: = 0 plane due to cracks locateo in the lower part of the
cylinder (: < 0) is the same as the effect of the cracks located on the upper part of the
cylinder. Hence the axial stress 17;:(=. 0) on the = = 0 plane due to all the cracks except the
central crack (located on the == 0 plane) is

where

'i.<. To -<,
Kz(r.l) = ': dskz(r.l.s) L cos (nhs) + L M(r.l.nh).

n: 0 n-I n-l

The axial stress 17;;(r. 0) on the: = 0 plane due to the central crack is

I I'l { I }17;;(r,O) = - - +k(r, I) ¢(t) dl,
n: c t-r

where

(I X)

( 19)

(20)
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k(r, I) =k I(r, I) +2/k 2(r, I),

m(r, I) - I m(r, I)
k,(r,/) = +--,

I-r I+r

563

(21)

(22)

{

£(r/I),

m(r,/) = r (2_ r 2
-£(I/r) + --K(I/r).
I rl

k 2(r, I) =f' k 2(r, I,S) ds.

r < I

r> I
(23)

(24)

Hence the axial stress on the z =0 plane due to all the cracks is

u;.(r, O) =! rd {_l_ +k(r, I) +21tIK2(r, ()} ¢(/) dl
1t J I-r

and from eqns (25) and (10) the required integral equation is obtained as

! fd {_I_ +I(r, I)} ¢(/) dl = - p(r), C < r < d,
1C ,. I-r

where

I(r, I) = k(r, I) +21t1K 2(r, I).

(25)

(26)

(27)

When the crack tips c and d are embedded in the matrix. eqn (26) is solved with the
condition that the crack tips are closed at c and d, given by

r¢(r) dr = O. (28)

Although four different cases can be considered depending on where the crack tips are
located. here attention is focused on the fully cracked matrix, i.e. when c = a and d = b.

The solution of the integral equation which has a generalized Cauchy kernel is of the
form

¢(t) = (I-a)/lg(/), a < 1 < b (29)

where it is noted that ¢(/) is bounded at 1 =b. The characteristic equation required to
determine Pis obtained by applying the function-theoretic method to the integral equation
and is given by eqn (64) in Wijeyewickrema and Keer (1991). The constant Pis real and is
a function of the material properties of the fiber and matrix. Next, the limits of the integral
equation are normalized by defining

$AS 29:5-C

b-a b+a b-a b+a
1 = -2-<+ -2-' r = -2-P+ -2-' (30)

(31)
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to obtain the equation

p(r) =P(p).
h-a

L(p. r) = ., I(r. n. (32)

I f+ I { 1 }-+L(p.r) F(r)(l-r)-'C(r+l)lIdr= -P(p).
TC _I r-p -I <p< +1. (33)

Equation (33) is solved together with the additional condition F( + 1) = O. to account for
the boundedness of¢(t) at t = b by using a Gauss-Jacobi type quadrature formula (Erdogan
et af.• 1973).

The mode I stress intensity factor at the crack tip a is dellned by

K(a) = lim 2Ic(a-r)-1111~~(r.O).
r~a

and is expressed as

K(a) = jl*lim 2 12 (r - (I) -II¢(r) = jt*llo'l F( - I)
' ....... 0

where

Jt* = ii( I + 1\ I) {Q:t" 2fl)(~+Ji~,)_-:-:(I+ 2lf.Hii + I(!I)}
2 (ji + 1(1l)(1 + iiI( I) sin TC( I + Ii) .

(34)

(35)

(36)

Here {I. = Jlo/ltl whl:rl: 11.,. (i:::: O. I) arl: thl: shl:ar moduli. 1(, = 3 -4v" (i = O. I) and
ao = (h - a)/2. The compact formula given by Krenk (1975) is uscd to obtain F( - I). The
infinite series in eqn (19) are evaluated by truncating the series such that the desired accuracy
is obtained. When the crack spacing h/211 = 0.0 I, it was found that summing the infinite
series in eqn (19) up to II = 50 was sullicient.

RESULTS AND DISCUSSION

Numerical results arc given for the stress intensity t~lctors at the crack tip. interfacial
stresses and the axial stresses in the composite at ditlcrent locations. In all the numerical
examples the Poisson ratios were taken as l'll = VI = 0.25 and p(r) = a;:(r) = al). The axial
stress in the matrix a 0 is obtained by considering an undamaged concentric circular cylinders
model which is subjected to a uniform longitudinal tensile strain ';0 at : = ± oc:. When the
outer matrix surface is stress free

(37)

where

(38)

and Vf = a 2/h 2• Vm = 1- Vr and kl" = 11.,/( 1-2v,). (i = O. I). (Appendix A. Wijeyewickrema
and Keer, 1991.) Here jt. V and £ arc the shear modulus Poisson ratio and Young's
modulus respectively and the subscripts 0 and I refer to the fiber and mutrix. Motivated by
experiments carried out at Northwestern University, the stress fields are presented for a
calcium aluminosilicate glass ceramic reinforced with Silicon Carbide fibers (SiC/CAS).
The SiC/CAS composite has the following material properties (Daniel et al.. 1989):
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Fig. Z. Stress intensity factors for annular edge cracks when the matrix is fully cracked. crack spacing
h{b =0.5.

Eo = 207 GPa (30.0 X 106 psi), E1 =98 GPa (14.2 X 106 psi),

Vo = VI = 0.25. VI = 0.4. (39)

For these material values ii = 2.1127, alb =0.6325 and II = -0.4242. All results for the
stresses are normalized with respect to the uncracked matrix stress (10' i.e. ii,.,.(a, z) =
11,,(a. =)/(10 etc.

The norm.llized stress intensity factor is defined by

, K(o)
K (0) = ----::ji = Il*F( -I).

(100 0
(40)

The crack tip singularity - II depends on ii and for ii = 7, I and 1/7 takes values of +0.3304,
+0.5 and +0.7149 respectively. As the stiffness of the fiber increases the crack tip singularity
- II decreases. It is not possible to compare K'(a) for different ratios of ii since the crack
tip singularity at a is dependent on Ii. (n Figs 2 and 3 the normalized stress intensity factors
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Fig. 3. Stress intensity factors for annular edge cracks when the matrix is fully cracked. crack spacing
h{b:lt 1.0.
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Fig. 4. Stress intensity factors for annular edge cracks when the matrix is fully cracked. fiber volume
fraction V, = 0.4.

are plotted against alb for crack spacings ofhlb = 0.5 and 1.0. respectively. When the radius
of the fiber increases K'(a) decreases monotonically when hlb = 1.0. but when h/b = 0.5.
K'(a) initially starts decreasing but starts to increase as a/h.-. 1.0. In Figs 4 and 5 the
normalized stress intensity factor is plotted against h/2a for tIber volume fractions of
Vr = 0.4 and 0.6. respt:ctivcly. The mid-planes between cracks act as constraining boundaries
with no axial displacements. When the crack spacing 11/2(/ .-. O. this boundary eOcct results
in /\'(a) .-. O. For the smaller volume fraction of V, = 0.4. /\'«(/) has no significant change
for ji. > I when the crack spacing hl2a > 2.0. For the larger volume fraction VI = 0.6. for
ji > I. /\'(a) is constant when 1I/2a > 1.0 and for ji ~ I. K'«(/) is constant when 11/2(/ > 1.5.
Hence it can be concluded that for still" fibers when the fiber volume fraction is large. cracks
can be spaced as close as one fiber diameter apart with no crack interaction elli:cts.
Experimental results (Daniel t'l al.• 1989) indicate that for a SiC/CAS composite which has
a good bond at the interface. the minimum crack spacing is about two fiber diameters. From
Fig. 4 it is seen that crack interaction clTects arc significant for the SiC/CAS composite only
when the crack spacing is smaller than two fiber diameters. It is noted that the assumption
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Fig. 5. Stress intensity factors for annular edge cracks when the matrix is fully cracked. fiber volume
fraction V, = 0.6.
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Fig. 6. Normali:lcu intcrfacial stresscs of thc SiC/CAS composite for different crack spacings.

of perfect bonding at the interface made in the analysis, theoretically permits the number
of cracks that are generated to keep on increasing without any limit and hence it is not
possible to predict a minimum crack spacing. As will be shown later, the interfacial shear
stresses near the crack increase relative to the matrix axial stresses when the crack spacing
decreases, thereby causing the dominant failure to become interfacial rather than in the
matrix for small spacings.

The interfacial stresses are given in Fig. 6, where both iT,,(a, z) and iTr:(a, z) are singular
when approaching the crack planes. Due to the opening up of the cracks iT,,(a, z) decreases
rapidly and changes to compression. The tensile radial stresses near the crack planes will
lead to interfacial debonding. The shear stresses drop to zero at the mid-plane between
cracks due to symmetry considerations. The high shear stresses will facilitate relative slip
between the fiber and thc matrix after interfacial debonding has taken place. The axial
stress distribution in the fiber at the crack plane iT::(r, 0), given in Fig. 7 shows that when
the crack spacing gcts smaller the axial stress in the center of the fiber starts increasing
while decreasing in the vicinity of the interface.

In Fig. 8 the axial stress at the mid-plane between cracks is plotted for various crack
spacings. For a given crack spacing the matrix carries more load at the interface than at
the mid-surface between fibers since the load is transferred to the matrix through the
interface. For small crack spacings a large drop in axial stress occurs when r =b. From
Fig. 9 it is secn that the matrix axial stress at the interface is a minimum at the mid-plane



568 A. C. WUEYEWICICREMA and L. M. KEER

5II
c:...

hl2a= 2.5~ •
.JI. • hl2a= 10
u......

(.) 4

iii
.....
.a
iL:

.= 3....
II...
u;

~
)( 2< 0.0 0.2 0.4 0.6 0.8 1.0

rIa

Fig. 7. Normalized a",ial stress in the fiber on the crack plane of the SiC/CAS composite for diffcn:nt
crack spacings.

between cracks. It appears that the high radial and shear interfacial stresses may lead to
debonding and relative slip at the interface starting at the crack planes; the crack tip is no
longer closed but is blunted. thereby causing the high axial stress near the crack plane to
diminish. Hence the axial stress distribution at the interface should be such that it is zero
at the crack plane. and reaches a maximum away from the crack plane. To locate the slip
region and the position where the maximum axial stress occurs requires an analysis which
also incorporates slip at the interface.

Furthermore. Fig. 8 shows that the shear lag theories and other approximate methods
used by many investigators. may not provide good results as the spacing becomes smaller,
since crack interaction may cause the assumptions that result in uniform axial stresses in
the matrix in the radial direction to be invalid. A calculation verif)ling approximate analyses
by the more exacting theory incorporating debonding and slip is preferred.

Figure 10 shows the matrix axial stress at r = b i.e. at the mid-surface between fibers.
When the crack spacing becomes smaller, less load is seen to be transferred to the matrix
through the interface.
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Fig. 8. Normalized axial stress in the matrix at mid-plane between cracks of the SiC/CAS composite
for different crack spacings.
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Fig. 9. Normalized 3;'(ial stress in the mat rill at the interface of the SiC/CAS composite for different
crack spacings.
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